top of page

Analysis of mesophyll conductance in five understory herbaceous species

  • Immagine del redattore: Mirko Granata
    Mirko Granata
  • 27 dic 2020
  • Tempo di lettura: 1 min

Aggiornamento: 29 dic 2020

Not only trees are important. Healtly woodland have many herbaceous species with different ecological strategy.


Mesophyll conductance (gm) has received over time much less attention than stomatal conductance (gs), although it affects leaf photosynthesis to about the same extent as stomatal conductance does. The objective of this study was to analyze the gm trend in five understory herbaceous species growing in a close-canopy forest in the north-west of Italy. In particular, three of analyzed species were monocots: Carex brizoides Lam., Carex pilosa Scop., and Oplismenus undulatifolius P. Beauv and the others dicots species: Circaea lutetiana L., and Pulmonaria officinalis Ced. The results showed, on one hand, the absence of correlation between gm and the considered environmental variables in the forest understory (i.e. air temperature, photosynthetic photon flux density and carbon dioxide concentration). Moreover, we carried out a principal component analysis considering all the analyzed morphological and physiological variables for the five species. The following correlation between the first component, related to the leaf mass per unit of leaf area and the leaf tissue density, and gm seem to suggest a key role of the leaf structural features in determining gm variations across the five species.


Full article:

https://link.springer.com/article/10.1007%2Fs12298-019-00746-5

 
 
 

Comments


Plant Eco-Physiology Lab

© 2021 by Scientist Personal. Proudly created with Wix.com

LogoNero.png
  • ResearchGateLogo
  • LinkedIn Clean Grey
bottom of page